当前位置:首页  教学科研

学术讲座【A stable method for finding multiple unstable solutions to elliptic systems with nonlinear boundary conditions】

时间:2012-12-08浏览:883设置

时间:2012年12月14日(星期五)下午15:00

地点:成功楼603教室

主讲:中国科学技术大学 陈先进教授

主办:数计学院

专家简介:陈先进,美国德克萨斯A&M大学(Texas A&M University)数学博士,华中科技大学数学学士和硕士,美国明尼苏达大学应用数学研究所(Institute of Mathematics and Its Applications)博士后(2008.09-2010.07),现任教中国科学技术大学。目前主要从事非线性偏微分方程组不稳定多解的分析与计算方法的研究,并在该领域取得了一些原创性的研究成果,成果发表在Mathematics of Computation, Physica D: Nonlinear Phenomena,  Applied Numerical Mathematics等国际杂志上。曾应邀到华中科技大学,复旦大学,瑞士苏黎世大学,美国康涅狄格大学,犹他大学等国内外著名大学做学术报告。

报告摘要:Saddle points usually appear as unstable equilibria or transient states in various dynamical systems. Many studies in convection-diffusion systems, corrosion/oxidation modeling, metal-insulator or metal-oxide semiconductor systems may lead to semilinear elliptic systems subject to nonlinear boundary conditions (NBC). In particular, coexisting states are of special interest in the study of the interaction of two different particles or species in those systems. In this talk, a local characterization on saddle points for dual functionals is proposed. Then, a stable numerical method for finding multiple coexisting states to semilinear elliptic systems with NBC is developed. In this end, some numerical examples are given.

返回原图
/