当前位置:首页  教学科研

学术讲座【Relating Diagnosability, Strong Diagnosability and Conditional Diagnosability of Strong Networks】

时间:2013-07-09浏览:353设置

时间:2013年7月11日(星期四)下午14:30

地点:仓山校区成功楼603室

主讲:西安电子科技大学 朱强副教授

主办:数学与计算机科学学院

专家简介:朱强,西安电子科技大学数学系副教授,硕士生导师。2005年获中国科学技术大学应用数学专业博士学位。2007年晋升为副教授。2009年8月至2010年12月在西安电子科技大学计算机系从事博士后研究。2011年9月至2013年3月在美国西弗吉尼亚大学访问,进行合作研究。研究方向包括并行与分布式系统,多处理器互连网络,算法设计与分析,图论等。担任IEEE TC、IEEE TPDS、JPDC、 Parallel Computing、Info. Sci.等多个国际著名学术期刊的审稿人。在IEEE TC、Info. Sci.、J.Supercomputing等国外学术期刊上发表论文多篇。目前主持国家自然科学基金项目1项。

报告摘要:An interconnection network’s Diagnosabilityis an important measure of its self-diagnostic capability. Based on the classical notion of diagnosability, strong diagnosability and Conditionnal diagnosability were proposed later to better reflect the networks’self-diagnostic capability under more realistic assumptions. In this paper, we study a class of interconnection networks called strong networks. We build a relationship amongst the three diagnosability  measures for strong networks: Under both PMC and  MMmodels, given a strong network G with diagnosability t, we prove that G is strongly t-diagnosable if and only if G’s conditionnal diagnosability is greater than t. A simple check can show that almost all well-known regular interconnection networks are strong networks. The significance of this paper’s result is that it reveals an important relationship between strong and conditional diagnosabilities,and the proof of strong diagnosability for many interconnection networks under MM or PMC model is not necessary if their conditional diagnosability can be shown to be strictly larger than their diagnosability.

返回原图
/