当前位置:首页  教学科研

学术讲座【Stability and Boundedness of Nonlinear Hybrid SDDEs】

时间:2014-02-28浏览:1164设置

时间:2014年3月3日(周一)下午16:00-17:00

地点:旗山区理工楼6楼数学研究中心报告厅

主讲:爱丁堡皇家学会院士,英国斯特拉斯克莱德大学数学与统计系主任 毛学荣教授

主办:数学与计算机科学学院

专家简介:毛学荣教授, 1982年获得华东纺织工学院(现东华大学)硕士学位,1987年到英国留学,1989年获英国Warwick大学博士学位,1989-1992年在Warwick大学作博士后,1992-1997年在Strathclyde大学任讲师、高级讲师、Reader,1998年晋升为教授。目前为爱丁堡皇家学会院士、Strathclyde大学数学与统计系主任。2011年毛学荣教授获得东华大学首个“教育部海外名师”(2014年5月到期)。
      毛学荣教授是一位具有国际重要影响的随机分析和随机微分方程的数值分析领域的学术专家,在随机稳定性相关问题,如随机指数稳定性、随机镇定,鲁棒随机稳定性,随机系统的反馈控制,随机微分方程数值稳定性等方面做出了一系列重要的学术成果,发表论文200余篇,出版专著5部。

报告摘要:One of the important issues in the study of hybrid SDDEs is the automatic control, with consequent emphasis being placed on the asymptotic analysis of stability and boundedness. The method of Lyapunov functions is one of the most powerful techniques in the study of stability and boundedness. So far, most of the results in this area do not only require the Lyapunov functions in different modes have a same feature(e.g. polynomials with a same degree) but also the diffusion operator in different mode be bounded by the same type of functions.

    These requirements are restrictive and often can not be met by those hybrid SDDEs that have different nonlinear structures in different modes.To study the stability and boundedness of such hybrid SDDEs,we will in this talk use different types of Lyapunov functions (e.g. polynomials with different degrees)for different modes. Moreover, the condition on the diffusion operator is relaxed significantly. A number of Monte Carlo simulations are carried out to illustrate the theory.

返回原图
/