地点:仓山校区 成功楼603教室
主讲:美国密苏里州大学堪萨斯分校 Lein Harn教授、博士生导师
主办:数学与计算机科学学院
福建省网络安全与密码技术重点实验室
专家简介:Lein Harn,美国密苏里大学堪萨斯分校机电工程系教授。1977年获国立台湾大学电子工程理学学士学位,1980年获纽约州立大学工电子工程硕士学位,1984年获明尼苏达大学电子工程博士学位。1984年任密苏里哥伦比亚分校电子与计算工程系副教员。1986年至密苏里大学堪萨克斯分校(UMKC)计算机科学与通信项目(CSTP),期间在佛罗里达的Racal Data Group从事研究工作一年。主要从事加密技术、网络安全与无线通信安全等领域的研究。在《IEEE Trans on Computers》,《IEEE Trans. on Communications》, 《IEEE Trans. on Circuits and Systems》, 《IEEE Journal on Selected Areas in Communications》, 《IEEE Trans. on Software Engineering》, 《IEEE Trans. on Knowledge and Data Engineering》, 《ACM SIGICE Bulletin, IEEE Trans. On Information Theory》, 《IEEE Trans. on Dependable and Secure Computing》以及《CRYPTO》,《ASIACRYPT》,《AUSCRYPT》,《IEEE INFOCOM》,《ACM SIGCOMM》等计算机及密码学领域的国际顶级期刊及顶级会议发表了多篇学术论文,撰写了2本安全方面书籍。曾讲授过《数据安全与密码学》、《通信与网络安全》、《计算机系统入门》、《编码理论》等课程。目前,他主要从事数字签名和秘密共享在通信应用中的新方法研究。
报告摘要: Secret sharing is one of most popular cryptographic tools which has been proposed originally in 1979. Shamir’s threshold secret sharing is the most popular scheme in the literature. But, Shamir’s scheme has a special secret access structure in which (a) any t (i.e., the “threshold”) or more than t shareholders can recover the secret and (b) fewer than t shareholders cannot recover the secret. A general secret sharing has more general secret access structure in which (a) any “qualified subset” of shareholders can recover the secret and (b) any “unqualified subset” of shareholders cannot recover the secret. Most papers on general secret sharing in literature contain only theoretical discussion. In this talk, I will introduce my recent paper to propose a complete implementation of a general secret sharing. We use Boolean logic to characterize a general secret access structure and derive the minimal positive secret access and the maximal negative secret access subsets. Then, we use these two subsets to determine parameters to implement a general secret sharing. Our design enables to select optimized parameters and is a general design.
个人网页